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Problem

I Data collected at long observation intervals

I Want to simulate a time-homogeneous Markov
chain at shorter cycles (time steps) than the
observation interval

I Example: monthly simulation from biennial data

I How to get the maximum likelihood estimate of
the short-cycle transition matrix?



Notation

Q = Pk

I Q = transition matrix over data observation
interval

I P = transition matrix over model cycle length

I k = number of cycles per observation interval

I Example: monthly simulation from biennial
data...

Q = P24



Craig & Sendi (2002)1 diagonalization

1. Get maximum likelihood estimate Q̂ using the
transitions rates observed in the data

2. Use eigendecomposition of Q̂ to obtain
I A, the matrix of eigenvectors, and
I D, the diagonal matrix of eigenvalues,

such that,
Q̂ = ADA−1

3. The maximum likelihood estimate of P is:

P̂ = AD1/k
A
−1

1
Craig, B. A., & Sendi, P. P. (2002). Estimation of the transition matrix of a discrete-time Markov

chain. Health Economics, 11(1), 33�42.



Diagonalization doesn't always work...

I P̂ = AD1/k
A
−1 requires real-valued,

non-negative eigenvalues and linearly
independent eigenvectors

I When diagonalization fails, Craig & Sendi
recommend iterative optimization of the
likelihood of P in order to �nd P̂ directly, but
they warn...

�Convergence to the MLE is not guaranteed
(may converge to local maximum) so several
initial transition matrices are recommended.�



Other indirect methods
I See Chhatwal et al. (2016)2, Jahn et al.
(2019)3, and references therein.

I �Indirect� because they start with Q̂ and try to
�nd P̂

I Failure modes:
I P̂

k
= Q̂, but P̂ is not a transition matrix

(negative probabilties)

I P̂ is a transition matrix, but P̂
k 6= Q̂

I not a maximum likelihood estimate

I Can also result in P̂
k
= Q̂ for multiple P̂

2
Chhatwal, J., Jayasuriya, S., Elbasha, E. H. (2016). Changing cycle lengths in state-transition

models: challenges and solutions. Medical Decision Making, 36(8), 952�964.

3
Jahn, B., Kurzthaler, C., Chhatwal, J., Elbasha, E. H., Conrads-Frank, A., Rochau, U., . . .

Siebert, U. (2019). Alternative conversion methods for transition probabilities in state-transition models:
validity and impact on comparative e�ectiveness and cost-e�ectiveness. Medical Decision Making,
39(5), 509�522.



Direct approach

I Maximize the likelihood of P instead of
likelihood of Q

I Constrain P to be a transition matrix

I This is avoids the failures of Craig & Sendi's
diagonalization and the other indirect methods



Log-likelihood function

I s = number of states in in the model

I nij = number of transitions from state i to state
j observed in the data

I Log-likelihood:

l(P) =
s∑

i=1

s∑
j=1

nij ln qij(P)

where qij(P) is the (i , j) element of Pk



Optimization setup

I Constraints on P:
I pij ≥ 0

I

s−1∑
j=1

pij ≤ 1

I pis = 1−
s−1∑
j=1

pij

I Using constrOptim function in R, an
interior-point (barrier) method

I Adds boundary function to log-likelihood that
pushes objective toward −∞ when any pij gets
very close to zero

I Inner iteration uses BFGS optimization
I See Chapter 16 of Lange (2010)4

4
Lange, K. (2010). Numerical Analysis for Statisticians (2nd ed.). New York: Springer.



Grid search setup

I Optimization needs a initial value for P

I Convergence depends on this inital value
I For each pij (j 6= s), select R values evenly
spaced within the [0, 1] interval

I For R = 20: 0.0476, 0.0952, 0.1429, . . ., 0.9524

I Use the cross-product to create a set of initial
values for P: P1,P2, . . . ,PM

I Run optimization starting at each of these initial
values and see where it converges



Counting convergence points

I How many meaningfully di�erent convergence
points are there?

I In publication, P̂ would be rounded to two or
three decimal places

I Count the number of unique convergence points
after rounding



Counting convergence clusters

I Initial values of P are equally spaced neighbors

I Convergence points should be clustered around
local maxima

I Count the number of clusters such that
1. points within clusters are closer than the initial

distance between neighbors, and
2. distance between clusters is greater that the initial

distance between neighbors

I Any convergence points that di�er by at most
0.005 are practically the same

I Count the number of clusters separated by at
least 0.005 distance



Study setup
I s = 3 states, M = 6, 859, 000 initial values for P
I k = 2, 24, 100 cycles per observation interval
I Study 1: Q̂ diagonalization fails due to one
negative eigenvalue

N1 =

 200 650 400
350 350 100
250 300 50


I Study 2: Q̂ diagonalization fails due to two
negative eigenvalues

N2 =

 100 200 650
300 350 100
250 300 50





Results

Cycles per observation interval (k)
2 24 100

Study 1
Non-converging 5 2 0
Unique to 2 decimal places 29,275 5,333,775 5,920,163
Unique to 3 decimal places 472,017 6,597,787 6,858,483
Clusters at 0.0476 distance 864 33 3
Clusters at 0.0050 distance 32,510 5,935,634 6,473,178
Study 2
Non-converging 13 56 30
Unique to 2 decimal places 87,065 5,105,778 6,085,119
Unique to 3 decimal places 495,642 6,154,129 6,849,961
Clusters at 0.0476 distance 1,465 58 6
Clusters at 0.0050 distance 112,572 5,537,140 6,548,330



Concluding remark 1/3

For larger k the log-likelihood �attens, requiring
tighter convergence criteria, but tighter convergence
criteria can push the optimzation into the constraint
boundary where it fails

I Alternative optimization approach of Craig &
Sendi might avoid this, but needs to be
investigated



Concluding remark 2/3

This is a lot of computational work. Are these worth
the e�ort?

I likelihood maximization
I discrete time

I Consider survival / time-to-event models

I time-homogeniety



Concluding remark 3/3

Further work:

I complex eigenvalues

I s > 3 states

I Any suggestions?
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