# Global and digitalized economy, new labour demand scenarios and optimal tax-transfer reforms

Ugo Colombino (EST, University of Turin, CHILD, Italy) & Nizamul Islam (LISER, Luxembourg)

# IMA 2021 – 8th World Congress of the International Microsimulation Association (online)

December 1-3, 2021

#### Motivation for reform

- **Innovation** processes (Globalization, Automation, Digitalization) are implying important **changes** in the size and structure of labour demand
- Possible effects (Acemoglou & Restrepo 2017, Autor & Dorn 2013, Sachs & Kotlikoff 2012 etc.):
  - fewer jobs
  - more temporary jobs and intermittent careers
  - increased inequality and polarization of incomes
  - welfare policies under stress due to increased job and income insecurity

#### Motivation for reform

 The traditional welfare policies might not be appropriate for coping with the new scenario and distributing the gains from automation and globalization.

 Most reforms during the last decades: more sophisticated meanstested and categorical policies

 Alternative view: simple, unconditional, universal policies (Islam & Colombino 2018, Colombino & Narazani 2013)

### Purpose

Testing whether a simple and universalistic tax-transfer rule (TTR) can

- outperform the complex and categorical current TTRs
- more efficiently cope with new labour market scenarios with fewer available jobs

### Our approach

- Computational Optimal Taxation approach
- Combination of behavioural microsimulation and numerical optimization
  - A microeconometric model simulates households' choices and welfare given alternative TTRs
  - Households' welfare levels are aggregated into a Social Welfare function
  - An optimization routine searches polynomial TTRs until Social Welfare is maximized s.t.
    - Fiscal neutrality
    - Labour market equilibrium

## Polynomial TTRs

$$C_{i} = \tau_{0} \sqrt{H_{i}} + \tau_{1} y_{i} + \tau_{2} y_{i}^{2} + \tau_{3} y_{i}^{3} + \tau_{4} y_{i}^{4}$$

- C = total household net disposable income
- y = total household taxable income
- *H* = household size
- If  $\tau_o$  > 0: UBI or, equivalently, NIT
- If  $\tau_2 = \tau_3 = \tau_4 = 0$ , then we have a UBI (or NIT) with FT:

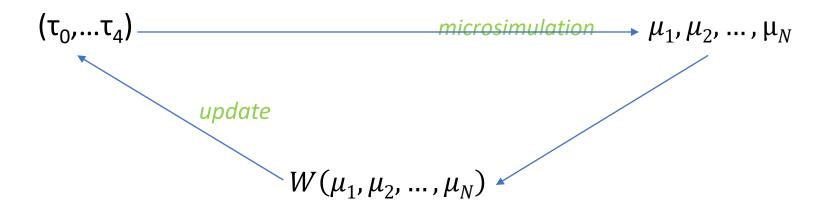
$$C_i = \tau_0 \sqrt{H_i} + \tau_1 y_i$$

#### The microeconometric model

- Random Utility Random Opportunities (RURO) model
- Can account for alternative labour demand scenarios
- Can account for labour market equilibrium (Colombino 2013, Coda Moscarola & al., Colombino & Islam 2021, Colombino & Narazani 2021)
- The data are taken from EU-Silc 2015 for France, Germany, Italy and Luxembourg
- The dataset used for estimation and simulation are created with Euromod

#### Social welfare

We adopt the following Social Welfare index (Kolm 1976):


$$W = \overline{\mu} - \frac{1}{k} \ln \left[ \sum_{i} \frac{\exp\left\{-k\left(\mu_{i} - \overline{\mu}\right)\right\}}{N} \right]$$

 $\mu_i$  = household i's welfare level (comparable money-metric utility, King 1983)

$$\overline{\mu} = \frac{\sum_{i} \mu_{i}}{N}$$

## Identifying optimal TTR

Iterate the polynomial TTR parameters  $\tau_0,...\tau_4$  until W is maximized:

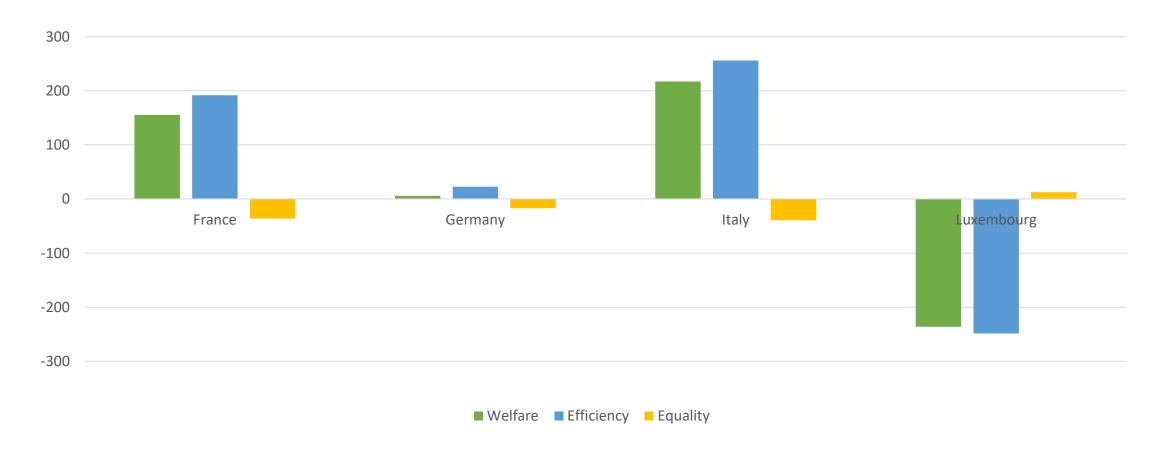


with constraints:

Labour market equilibrium

Fiscal neutrality

## This paper

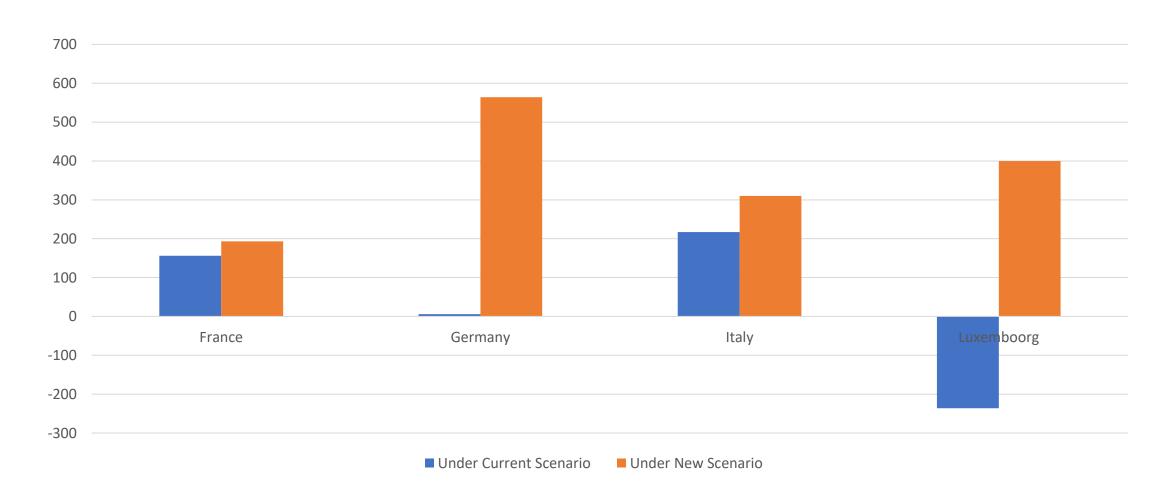

- We consider two alternative labour demand scenarios:
  - The current (observed) one
  - The "jobless" scenario: -10% available market jobs for any level of the wage rate (i.e. a horizontal shift of the demand curve)
- Two exercises: identify optimal polynomial TTRs
  - under the current scenario
  - under the "jobless" scenario

# Exercise n. 1 Optimal polynomial TTRs under the current labour demand scenario

- Optimal polynomial TTRs are superior (more efficient, although slightly disequalizing) to the current ones, exception is Luxembourg
- Optimal TTRs include a UBI (or, equivalently, a NIT)
- Optimal marginal tax rates are **flatter** than the current ones, close to flat up to 100000 euros:

$$C_i = \tau_0 \sqrt{H_i} + \tau_1 y_i$$

Exercise n. 1
Optimal Polynomial TTR vs. Current TTR: Changes in Welfare, Efficiency and Equality (monthly euro-equivalent *per* household)




# Exercise n. 2 Coping with the new scenario

Optimized TTRs given the new scenario outperform current TTRs

 Gains from optimizing: they are larger under the «jobless» scenario than under the current scenario

Exercise n. 2
What do we gain by optimizing...(monthly euro-equivalent *per* household)



#### Conclusions

A simple (5 parameters) NIT or UBI with a (almost) FT might:

 Outperfom the complex (dozens or hundreds of parameters) current TTRs

• Be an appropriate response to the «jobless» scenario

# Thank You!

#### Referemces

- Coda Moscarola, Colombino, Figari & Locatelli (2020) Shifting taxes away from labour enhances equity and fiscal efficiency, *Journal of Policy Modeling*, 42(2, 367-384.
- Colombino (2013) A new equilibrium simulation procedure with discrete choice models, *International Journal of Microsimulation*, 6(3), 25-49.
- Colombino & Narazani (2013) Designing a Universal Income Support Mechanism for Italy. An Exploratory Tour, Basic Income Studies, 8(1), 1-17.
- King (1983) Welfare analysis of tax reforms using household data. *Journal of Public Economics*, 21(2), 183-214.
- Islam & Colombino (2018) The NIT+FT case in Europe. An Empirical Optimal Taxation Exercise, *Economic Modelling*, 75C, 38-69.
- Narazani & Colombino (2021) Modelling sector-specific employment shocks with EUROLAB, a
  multidimensional behavioural model, JRC Working Papers on Taxation & Structural Reforms 2021-09, Joint
  Research Centre (Seville site).