A dynamic microsimulation model for ageing and health in England: The English Future Elderly Model (E-FEM)

Luke Archer¹
I.archer@leeds.ac.uk

Nik Lomax¹ Bryan Tysinger²

1 - The University of Leeds, Leeds, UK

2 - The University of Southern California, Los Angeles, California, USA

Outline

- 1. Context
- 2. Methods
- 3. Validation
- 4. Example Intervention: Smoking Cessation

Productive Healthy Ageing

Policy paper overview:

Healthy ageing: consensus statement

This statement by Public Health England and the Centre for Ageing Better sets out our shared vision for making England the best place in the world to grow old.

From: Public Health England

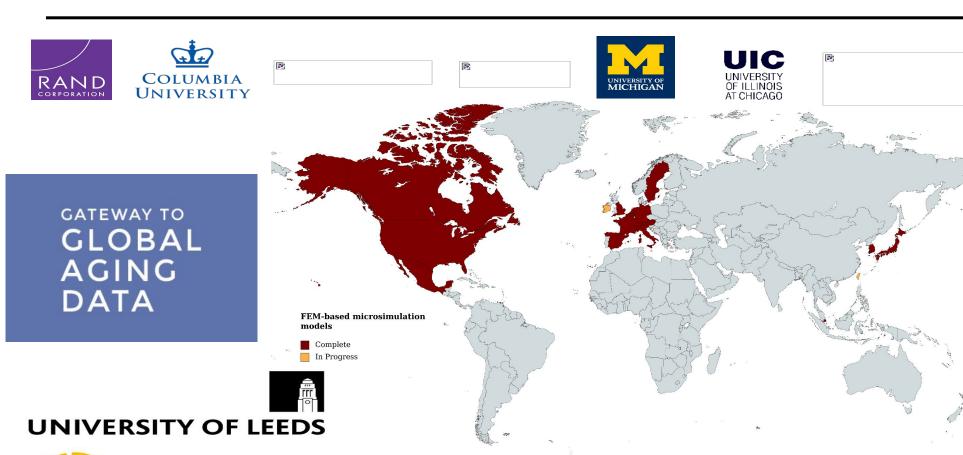
Published 16 October 2019

Last updated 30 September 2021 — See all updates

Public Health England, 2019. *A consensus on healthy ageing*. London: PHE publications.

Public Health England, 2019. *A menu of interventions for productive healthy ageing*. London: PHE publications.

Guidance


Productive healthy ageing: interventions for quality of life

Interventions that can be made by pharmacy teams, to improve quality of life for older people.

From: Public Health England

Published 19 March 2019

Microsimulation Global Collaborator Network

FEM-based microsimulation models

Korea

Complete

Austria Belgium Canada Denmark France Germany Italy

Mexico Netherlands Singapore Spain Sweden Switzerland

England

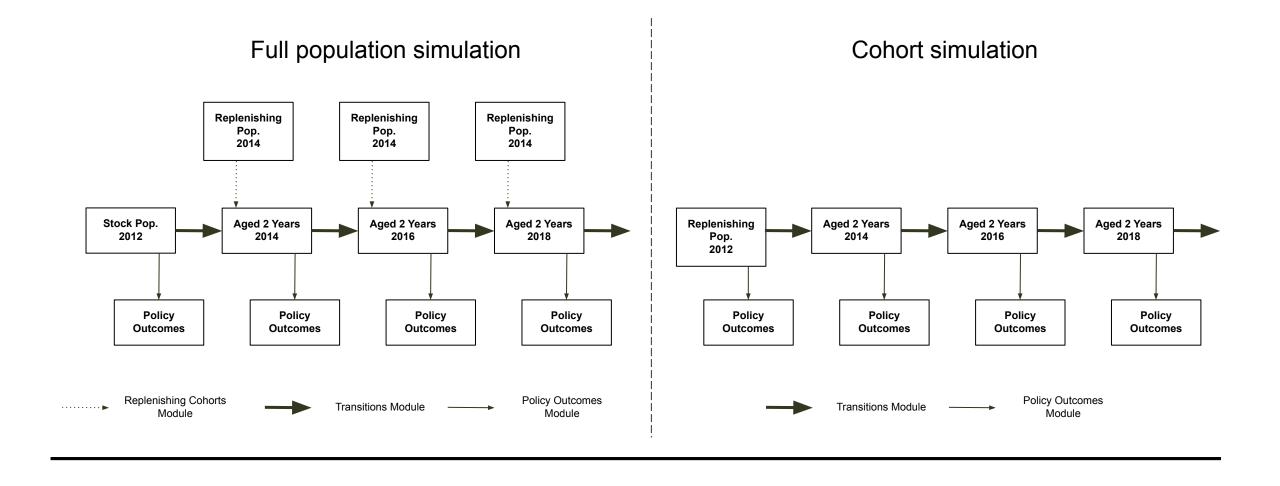
In Progress

Ireland

Japan

Taiwan

UQÀM Université du Québec à Montréal



Transition Outcomes

Table 1: Variables tracked by the model.

Domain	Variable			
Health	Mortality, Alzheimers, Cancer, Dementia, Diabetes, Heart Disease, High Cholesterol, Hypertension, Lung Disease, Stroke			
Risk Factors	BMI, Smoking Status, Alcohol Consumption, Exercise			
Functional Limitations	Difficulties in Activities of Daily Living (ADLs), and Instrumental Activities of Daily Living (IADLs)			
Economic	Employed, Unemployed, Retired/Disabled			

Structure of the simulation

Transition models

Outcome	Variable Type			$Predictors^{(a)}$			
		Regression Model	Health Status	Risk Behaviours	Economic Predictors	Demographic	
Alzheimers incidence	Binary Absorbing	Probit	Hypertension Stroke	BMI Smoking Alcohol Consumption		Age Sex Ethnicity Education	
Start/Stop Smoking	Binary	Probit		ВМІ		Age Sex Ethnicity Education	
Alcohol Consumption	Binary	Probit		BMI Physical Activity		Age Sex Ethnicity Education	
ВМІ	Continuous	OLS		BMI Physical Activity		Age Sex Ethnicity Education	
Functional Limitations	Ordered	Oprobit	Stroke Dementia Alzheimers	BMI Smoking		Age Sex Ethnicity Education	
Physical Activity	Ordered	Oprobit		Functional Limitations Physical Activity		Age Sex Ethnicity Education	
Labour Force Participation	Unordered	Mlogit	Functional Limitations			Age Sex Ethnicity Education	

⁽a) All predictor variables are 2 year lag

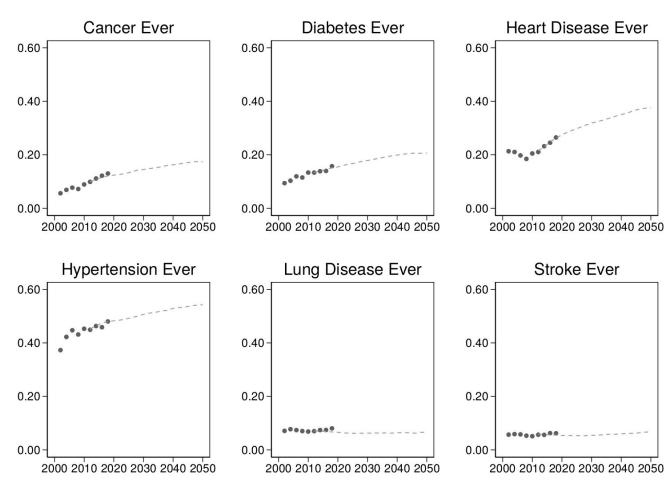
Causal Pathway

Risk Behaviours

Chronic disease and Functional Limitations

Economic Outcomes

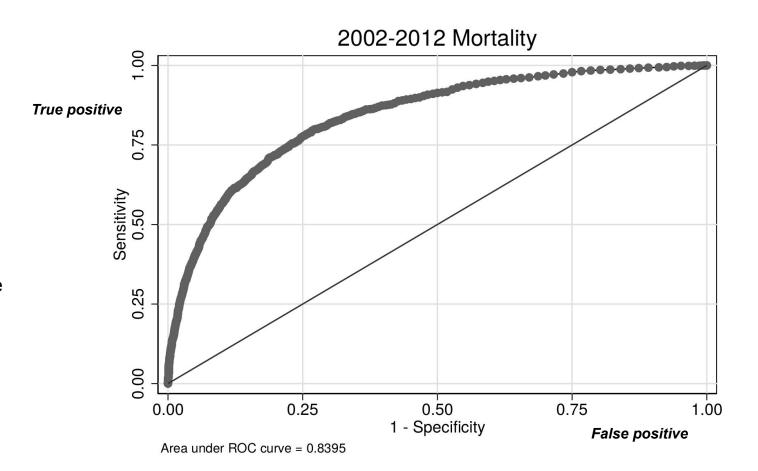
Outline


- 1. Context
- 2. Methods
- 3. Validation
- 4. Example Intervention: Smoking

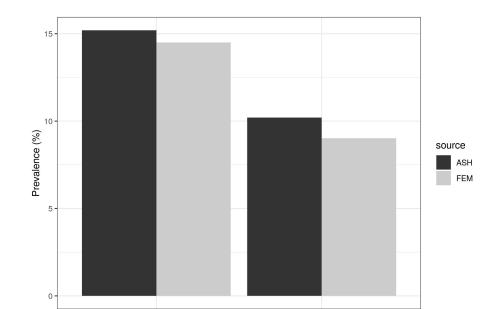
Internal Validation

Handover Plots

- "Sanity check"
- Does simulation continue trend from data?


Chronic Disease - Females

Internal Validation


Receiver Operating Characteristic (ROC) Curve

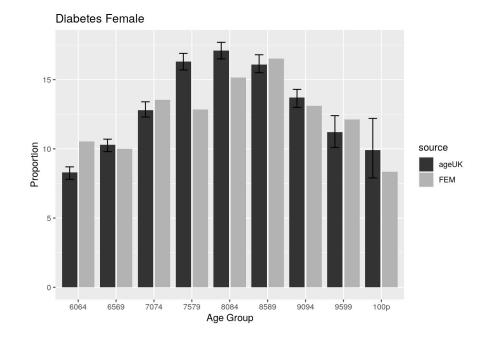
- Binary classification
- True Positive Rate vs False Positive Rate
- Sensitivity(1 Specificity)
- Higher AUC == Better prediction
- US 10-year mortality: AUC == 0.86

Validation

External

Smoking Prevalence (2018)

- Action on Smoking and Health

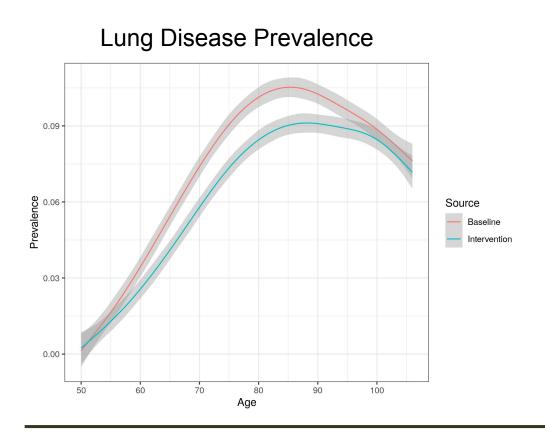

50 - 59

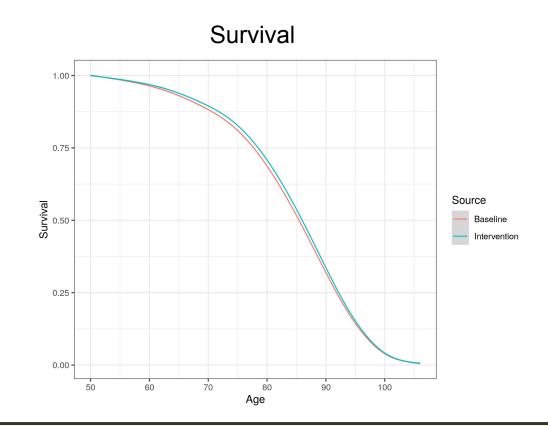
- Prevalence of smoking within age group

60+

- 2018 (8 years of simulation)

Chronic Disease Prevalence (2014)


- Age UK almanac of disease profiles in later life
- Prevalence of major diseases
- 2014 (10 years of simulation)


Example intervention: Smoking cessation

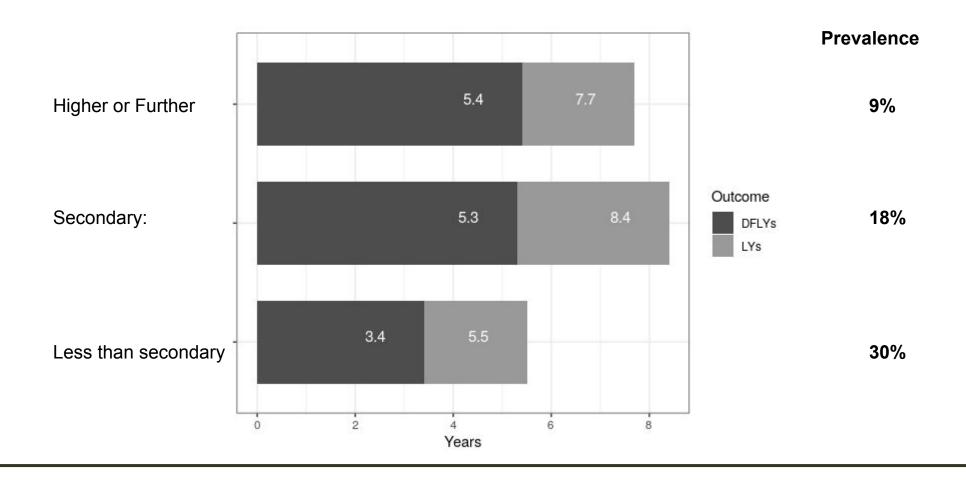
What if all smokers in a cohort quit at age 50 and did not relapse?

- Modified input population
- Altered transition probability

Example intervention: Smoking cessation

Sub-populations: Smokers

Scenario	Life Years	Disability-free Life Years
Baseline	24.4	16.9
Intervention	31.4	21.4


The NEW ENGLAND JOURNAL of MEDICINE

SPECIAL ARTICLE

21st-Century Hazards of Smoking and Benefits of Cessation in the United States

Prabhat Jha, M.D., Chinthanie Ramasundarahettige, M.Sc., Victoria Landsman, Ph.D., Brian Rostron, Ph.D., Michael Thun, M.D., Robert N. Anderson, Ph.D., Tim McAfee, M.D., and Richard Peto, F.R.S. "Adults who had quit smoking at ... 45 to 54 years of age gained about ... **6 years** of life, as compared with those who continued to smoke."

Sub-populations: Smokers by Education

A Dynamic Microsimulation Model for Ageing and Health in England: The English Future Elderly Model

Luke Archer

The University of Leeds, Leeds, UK l.archer@leeds.ac.uk

Nik Lomax

The University of Leeds, Leeds, UK n.m.lomax@leeds.ac.uk

Bryan Tysinger

University of Southern California, Los Angeles, California, US btysinge@healthpolicy.usc.edu

A dynamic microsimulation model for ageing and health in England: The English Future Elderly Model (E-FEM)

Luke Archer¹
I.archer@leeds.ac.uk

Nik Lomax¹ Bryan Tysinger²

1 - The University of Leeds, Leeds, UK

2 - The University of Southern California, Los Angeles, California, USA

