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Introduction

Estimating income mobility is challenging and most work has to
rely on imperfect data.

Ideally, require lifetime income for two generations. For
example, to estimate “intergenerational elasticity of income”,

Ysi =+ By, + & (1)

But usually researchers do not observe lifetime income:

® Using annual income might lead to large biases. Current standard
in literature: aim to measure incomes around “midlife” (Haider
and Solon, 2006)

® Measuring incomes around midlife reduces lifecycle bias, but does
not eliminate it (Nybom and Stuhler, 2017)

® Moreover, in many settings we observe incomes only at early ages;
for example, in estimation of mobility trends for recent cohorts

Measurement matters: Reliability of comparisons across space
and time also affects analysis of causal mechanisms
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Mello, Nybom and Stuhler (2021)

Propose an estimator of intergenerational income mobility that
eliminates lifecycle bias and that could be applied in common
data settings faced by practitioners; in particular, in short panels of
young cohorts.

¢ Build on a smaller strand of the literature that proposes to
“model the income process” by estimating complete income
profiles based on partial profiles and observable characteristics
(Creedy, 1987; Hertz, 2007; Vogel, 2007).

® Propose an improved “lifecycle estimator” and test its
performance in different settings (Swedish data, PSID and
simulated data).

e Apply the lifecycle estimator to revisit the question of recent
trends in intergenerational mobility in the U.S. and Sweden.

® Note: focus on the IGE and on income of offspring.
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Data
Swedish administrative registers (Statistic Sweden and IFAU).
¢ Individuals’ income trajectory and rich characteristics (gross
labor earnings, education, occupation, region of birth, cognitive
and non-cognitive skills, parental links)
® Main Sample: 201,063 sons born from 1952-1960

¢ Individual labor earnings for sons aged 25-58 ("lifetime income”)
and fathers aged 41-57; restrictions on parental age

® Trends Sample: 1,955,368 sons born in 1950-1989

Panel Study of Income Dynamics (PSID)
® US household survey with intergenerational links, waves
released between 1968 and 2017

® Parental income: family income over child age 15-17 (similar to
Lee and Solon 2009 and Chetty et al. 2014)

® Main sample: approx. 1,000 sons and daughters born between
1951 and 1960

¢ Trends sample: approx. 4,000 sons and daughters born in
1950-1989
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Intergenerational Perspective on
Income Process

As a reference point, consider the HIP model by Guvenen (2009). Let
log income for individual i with experience h at time t be given by:

Yff,t = g(0:, X}i,t) +a' + B'h+ Z;L,t + ¢t5;z,t

The income process has three key important components for our
setting:
* g(6:, X} ,), the income growth explained by observed
characteristics;
* ¢!, the transitory noise;

® o'+ 3'h, the unexplained income growth, that nevertheless may
correlate within families.
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Components of the Income Process
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Table 2: Earnings Growth Heterogeneity by Father’s Income, Swedish data

(1 2) (3) (4) (5) (6)
Log (Father’s Income)/100
x Age 25-30 13.3857%#%  3.6746%**  3.4935%#%  58631%#*  1.4998%** ] ,6059%**
(0.2521) (0.2273) (0.2626) (0.2410) (0.2253) (0.2621)
x Age 30-35 6.8129%*%  1.5028%#*  0.8233%**  2.5025%**  (.4841* 0.1163
(0.2016) (0.2036) (0.2306) (0.2040) (0.2048) (0.2337)
x Age 35-40 3.1877%%* 0.1389 0.0653 0.9817#%* 0.0508 0.0278
(0.1927) (0.1976) (0.2263) (0.2263) (0.2269) (0.2554)
x Age 40-45 0.7383%***%  -0.4760* -0.2721 -0.0421 -0.5428* -0.4158
(0.1810) (0.1884) (0.2160) (0.2087) (0.2115) (0.2445)
x Age 45-50 -0.5426%* -0.1232 -0.2768 -0.2270 -0.0125 -0.0087
(0.1771) (0.1829) (0.2107) (0.1903) (0.1926) (0.2244)
x Age 50-55 -2.4630%**  -0.8726% %%  -0.6699** -1.3924*** -0.5916%*  -0.4629*
(0.1742) (0.1790) (0.2063) (0.1810) (0.1807) (0.2097)
Education x Age X X X X
Occupation x Age X X X
Skill scores x Age X X
Demographics x Age X
N 950263 950125 744286 616941 616895 484297
R-sq 0.053 0.117 0.122 0.132 0.186 0.192
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Existing Correction Methods

Modelling the Income Process

Strategy I: Observable Heterogeneity with Individual Fixed
Effects (Hertz 2007, Vogel 2007)

@ Estimate income profiles with growth rates depending on
observables and individual fixed effects

Yiet = 0 + f(Ageict)B + g(Ageict, Zic)y + v + Eict, )

® f(Ageic) is a polynomial in age
® g(Ageict, Zic) is a flexible interaction of age with a vector of
individual observables (such as education)
@® Predict income at one particular age (Hertz, 2007) or predict and
aggregate over lifecycle (Vogel, 2007).

Strategy II: Extrapolate from income levels to income slopes
(Creedy, 1988)
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Existing Correction Methods

Modelling the Income Process

Performance:

Accounting for individual FE and income growth that depends
on observables (e.g. education/occupation) reduces lifecycle
bias as compared to directly using annual incomes.

Yet, income growth varies even within
education/occupation/other observables in a way that is
systematically correlated with parental background.

Estimated fixed effects - and lifetime income - therefore depend
on age range included in the first step estimation.

Then, when observing early ages, we understate lifetime income
of those with low initial incomes and steep profiles.

Biased estimation of mobility trends, in particular when using
different age windows for different cohorts.

Insight: observable heterogeneity and fixed effects are not enough
to capture effect of parental background on income profiles.
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Correction Methods

Modelling the Income Process

Panel A. lllustration Hertz Panel B. lllustration Vogel
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Figure: Illustration of life-cycle bias
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Correction Methods

Modelling the Income Process

Consequences for estimation of mobility trends

Panel A. Trends with Annual Incomes

Panel B. Trends with Corrections
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Lifecycle Estimator

Our Proposal: Lifecycle Estimator

@ Estimate lifecycle profiles allowing for individual fixed effects
and slopes that vary both with own and parental characteristics.
Specifically, estimate:

Yiet = & + [(Aict) B + 9(Aicts Zic)y + h(Aicts Zic, Pic)d + €ict, (3)

® o; are individual FEs, f(A;.) is a polynomial in age; g(Aict, Zic)
is an interaction of age with a vector of the individual’s own
characteristics

® h(Asct, Zic, Pic) is an interaction of child age and education with
parental characteristics Pi.

® Predict lifetime income and estimate the IGE.
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Lifecycle Estimator

Parental Lifecycle Estimator

® P, contains parental lifetime income and four indicators for
parental education.

¢ Consider linear or quadratic interaction between age and
parental income (see Table 2).

Two-step FE Estimator
¢ Estimate equation (3) without the h(A;., Z;, P;.) interaction, to
yield estimates of the individual fixed effect &;.

® Re-estimate the equation with the h(A;., Zic, &;) interaction
(linear or quadratic)
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Lifecycle Estimator

Testing the performance of the lifecycle estimator
¢ Birth cohort 1952-1960 in Swedish registers, observe complete
profiles (age 25-58)
® We therefore know “true” lifetime income and intergenerational
elasticity

e Split each individual into two partial copies and apply lifecycle
estimator on partial profiles

Issues:

¢ Estimation consists of multiple steps, affecting statistical
inference.

® Conversion of log to to absolute incomes gives rise to so-called
re-transformation problem (E[€;.] = 0, but E[exp(é;ct)] > 0)

¢ In many applications, child generation is only observed at
young age, and incomes at later ages never observed.
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Direct estimator

Lifecycle estimator

Lifetime  Annual Baseline  Parental Parental 2-Step 2-Step
(Linear) (Quadratic) (Linear) (Quadratic)
Son’s Age N 1 2) 3) 4) (5) (6) (@]
Age <27 375952 0.288*** (.070%** 0.200%%*  0.225%%*  (.268%#*  (.225%k#  ().235%kk
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.003)
0.070 0.004 0.032 0.040 0.056 0.024 0.021
Age <30 374376 0.289%** (.120%%* 0.237#%%  0.251%%*  (0.293%#*  (.268%***  ().285%**
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
0.072 0.010 0.050 0.055 0.075 0.043 0.040
Age <33 372548 0.289%** (.186%** 0.246%*  0.252%%*  0.290%#*  (.272%#%*F  (.285% %k
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
0.072 0.024 0.058 0.061 0.080 0.053 0.050
Age <36 370558 0.289*** (.206%** 0.253%%%  (0.263%%*  (.295%#% (0, 277%k*  ().289%kk
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
0.072 0.028 0.063 0.068 0.085 0.058 0.055
Age <40 367404 0.287#** (0.242%%* 0.264%%%  0.294%%*  (.302%%*  (.293%#*  (),209%*
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
0.073 0.034 0.067 0.083 0.087 0.062 0.061
Age <45 363026 0.285%** (.300%*** 0.274%%% 0.307*%*  0.295%#*  (.300%**  (.297***
(0.002) (0.003) (0.002) (0.002) (0.002) (0.002) (0.002)
0.072 0.038 0.071 0.088 0.082 0.067 0.068
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Lifecycle Estimator

Performance in alternative scenarios:
® Mean estimates are fairly insensitive to:
¢ the age range available for first step estimation

¢ the number of income observations observed for each person
® the number of individuals in the sample

¢ The lifecycle estimator also performs well in the PSID;
parental /FE quadratic estimators fluctuate around benchmark
estimate, without any apparent systematic lifecycle bias.
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Trends in Income Mobility

¢ Study mobility trends in Sweden and the US to:

® Examine whether previous estimates may have been
systematically distorted by lifeycle bias
¢ Estimate mobility trends for younger, more recent cohorts

¢ For recent cohorts, income profiles are necessarily incomplete.

® Possible “solution”: assume shape of age-income profiles remains
constant across cohorts (Vogel, 2007: Haider and Solon, 2006).

® Alternatively, allow steepness of income profiles to vary across
cohort groups (separately by education group).
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Table 8: Trends in Income Mobility in Sweden (Register data)

Direct Estimator

Lifecycle estimator

Annual Annual Baseline Parental Parental Parental 2-Step
All ages  Ages 25-30 (Quadratic)  (Quadratic) (Quadratic)  (Quadratic)
Cohort Adj. 1  Cohort Adj. 2
Cohort (1) (2) (3) 4 (5) (6) (7
1950-59  0.230%**  0.087*#* 0.196%#%*  0.196%%#* 0.196%#* 0.196%#* 0.190%#*
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
1960-69  0.224%*k*  (.]137*%** 0.207#%%  0.212%%* 0.212%%% 0.212%#% 0.221 %%
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
1970-79  0.198%**  0.161*** 0.197#%%  0.204%%* 0.204##% 0.204##* 0.229%#*
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
1980-89  0.162%**  0.]54%%#* 0.179%#%  0.191%#* 0.186%#* 0.190%#* 0.222%#*
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
R2 0.025 0.017 0.044 0.047 0.046 0.046 0.040
N 39,148,343 9,921,334 1,844,829 1,844,829 1,844,829 1,844,829 1,844,829
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Table 9: Trends in Income Mobility in the U.S. (PSID)

Direct Estimator

Lifecycle estimator

Annual Annual Baseline Parental Parental Parental 2-Step
All ages  Ages 25-30 (Quadratic)  (Quadratic) (Quadratic)  (Quadratic)
Cohort Adj. 1 Cohort Adj. 2
Cohort (1) 2 (3) (4) (5) (6) (7)
1950-59  0.3796***  (0.3093%*** 0.4328%#%  0.4207*%* 0.4221 %% 0.42297%# 0.43927%3*
(0.0336) (0.0394) (0.0409) (0.0410) (0.0410) (0.0409) (0.0430)
1960-69  0.3911%#%*  (0.3614%*** 0.4392%#%  (0.4347#%* 0.4326%** 0.4330%#* 0.4531%#%*
(0.0341) (0.0369) (0.0362) (0.0362) (0.0360) (0.0362) (0.0387)
1970-79  0.4060%**  (0.3489%** 0.4588*#*  (0.4536%*** 0.4568%%* 0.4561%##* 0.4913%#*
(0.0293) (0.0334) (0.0327) (0.0333) (0.0333) (0.0333) (0.0368)
1980-89  0.3079#**  (0.3111%** 0.3714%%%  (0.4009%** 0.4202%** 0.4130%#* 0.4109%***
(0.0253) (0.0273) (0.0254) (0.0251) (0.0256) (0.0252) (0.0301)
R2 0.0867 0.0820 0.1476 0.1506 0.1530 0.1533 0.1346
N 59458 17616 4931 4931 4931 4931 4931
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Concluding Remarks

Lifecycle estimator that allows for heterogeneous slopes (by
parental or own income) performs well, fluctuating around
benchmark without any apparent systematic lifecycle bias.

Estimator is fairly insensitive to age range available for first step
estimation, to the number of income observations available for
each individual and to the number of individuals in sample.

Estimator is attractive for comparative purposes, e.g. for
studying mobility across countries and time.

Estimator leads to slightly different conclusions regarding
trends estimation in Sweden and the US.

Limitations: we have not addressed RHS measurement error or
alternative mobility statistics (e.g., rank mobility)
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Introduction

Parents Offspring

Absolute upward
intergenerational mobility
Offspring are

better off than their parents

Relative intergenerational
mobility

Offspring of parents

who are relatively poor can
become middle class or upper
class among their generation
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Introduction

FIGURE 4.2 Higher relative IGM in income is associated with lower income inequality
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Lifecycle Bias
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® Focus on Left Hand Side (LHS) measurement error because we
do not observe the complete lifecycle of young cohorts and
would like to measure mobility trends.
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Introduction

MAP 4.1 Relative intergenerational mobility of income across the world
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Relationship between mobility in
income and education

FIGURE 1.2 Relative IGM in education and income are correlated,
but imperfectly
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Evidence Swedish Data

A Income by Occupation B: Income of Managers by Quartle of AnnualIncome at Age 35
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Log annual income

: Income of Managers by Fathers Lifetme Income

Evidence Swedish Data
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Correction Methods

Modelling the Income Process - Creedy
Even controlling by education, variance of income increases with

age.

Panel A: Variance by Educational Group
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Panel A. Swedish Data

Correction Methods

Modelling the Income Process - Creedy

Panel B. Simulated Data
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Log annualincome (demeaned)
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Lifecycle Estimator

Figure: Comparison between Actual and Predicted Profiles

A: Income Profiles, by Fathers' Lifetime Income, Education 3

A: Predicted Profiles, by Fathers' Lifetime Income, Education 3
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Table: The Lifecycle Estimator with Few Income Observations

Lifecycle estimator (Parental, Quadratic)

Son’s Age N 6 obs. 5 obs. 4 obs. 3 obs. 2 obs.
Age 30 187250  0.283*** 0.289%** 0.290*** 0.284*** 0.279***
(0.002) (0.002) (0.002) (0.002) (0.003)
R2=0.076 R2=0.077 R2=0.076 R2=0.069 R2=0.062
Age 35 185608  0.263*** 0.258*** 0.257*** 0.252%** 0.256***
(0.002) (0.002) (0.002) (0.002) (0.003)
R2=0.069 R2=0.064 R2=0.061 R2=0.056 R2=0.051
Lifecycle estimator (2-step, Quadratic)
Son’s Age N 6 obs. 5 obs. 4 obs. 3 obs. 2 obs.
Age 30 187250  0.240*** 0.242%** 0.236*** 0.235%** 0.238***
(0.003) (0.003) (0.003) (0.003) (0.003)
R2=0.032 R2=0.032 R2=0.03 R2=0.03 R2=0.029
Age 35 185608  0.244*** 0.242%** 0.239*** 0.237%** 0.239***
(0.003) (0.003) (0.003) (0.003) (0.003)
R2=0.041 R2=0.039 R2=0.037 R2=0.035 0.032
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Table: Varying the Sample Size

Sample size 1/4 1/16 1/64 1/256
N=46,356 N=11,624 N=2936 N=732

Benchmark based on lifetime income

Son’s Age 0260%*  0.266"*  0.259%*  (.259%**
25-53 (0.010) (0.014) 0.037)  (0.070)

Lifecycle estimator (Parental, Quadratic)

Son’s Age 0277+%  0277%%  0277*%*  0.283**
25-30 (0.007) (0.027) 0.050)  (0.097)

Son’s Age 0259%%  0.265%*  (0.262%%*  (.255%*
25-35 (0.015) (0.014) (0.040)  (0.083)

Lifecycle estimator (2-step, Quadratic)

Son’s Age 02554  (0.255%% (243 (257
25-30 (0.011) (0.022) 0.047)  (0.099)

Son’s Age 0246**  0.255%%  (0251%%  (0.241%*
25-35 (0.008) (0.021) 0.040)  (0.078)
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Table 7: The Lifecycle Estimator in the PSID

Direct estimator

Lifecycle estimator

Lifetime  Annual Baseline  Parental Parental 2-Step 2-Step
(Linear) (Quadratic) (Linear) (Quadratic)
Son’s Age 1) 2) 3) (€] (5) (6) (7)
Age <27 0.446%F  (0.270%** 0.388%*#%  0.407*%%  0.439%%%  0.456%**  (.463%**
(0.031) (0.016) (0.032) (0.032) (0.032) (0.039) (0.040)
N 1247 5947 1127 1127 1127 1127 1127
R? 0.143 0.047 0.114 0.125 0.143 0.108 0.104
Age <30 0.446%%*% (.3]11%** 0.406%#%  0.422%#%  0.450%*%  0.472%*%  0.477H**
(0.031) (0.013) (0.032) (0.031) (0.031) (0.038) (0.038)
N 1247 9019 1159 1159 1159 1159 1159
R? 0.143 0.060 0.126 0.135 0.151 0.120 0.118
Age <35  0.446%FF  (.354%*+* 0.420%#%  0.430%%*  0.441%*%  0.480%**  (0.48]%**
(0.031) (0.011) (0.031) (0.030) (0.030) (0.036) (0.037)
N 1247 13900 1191 1191 1191 1191 1191
R? 0.143 0.073 0.137 0.144 0.151 0.130 0.127
Age <40 04467 (0.376%** 0.430%#%  0.453%#% 0. 45]%%%  (0.483%**  (.482%%*
(0.031) (0.010) (0.032) (0.031) (0.031) (0.036) (0.036)
N 1247 18017 1229 1229 1229 1229 1229
R? 0.143 0.076 0.131 0.145 0.144 0.126 0.125
Age <45  0.446%**  (.385%** 042755 0.440% %% 0.427%%%  0.463%*F  (0.462%%*
(0.031) (0.009) (0.032) (0.031) (0.032) (0.035) (0.035)
N 1247 20603 1236 1236 1236 1236 1236
R? 0.143 0.077 0.130 0.137 0.130 0.124 0.125
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Figure: Income Profiles by Education Group and Cohort
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Table: Trends in Income Mobility in Sweden (Register data)

Direct Estimator

Lifecycle estimator

Annual Annual Baseline Parental Parental Parental
All ages Ages 25-30 (Quadratic) (Quadratic) (Quadratic)
Cohort Adj. 1 Cohort Adj. 2
o) 2 ©) “) ®) 6)
1950-59 0.253*** 0.097*** 0.219%** 0.219%** 0.219%** 0.219***
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
1960-69 0.276*** 0.180*** 0.267*** 0.280*** 0.280*** 0.280***
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
1970-79 0.273*** 0.238*** 0.281*** 0.301*** 0.304*** 0.304***
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
1980-84 0.244*** 0.235%** 0.275%** 0.303*** 0.317*** 0.308***
(0.004) (0.004) (0.005) (0.004) (0.005) (0.005)
R2 0.028 0.021 0.051 0.056 0.059 0.059
N 15,136,452 4,112,196 775,972 775,972 775,972 775,838
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Table: Trends in Income Mobility in the U.S. (PSID)

Direct Estimator Lifecycle estimator
Annual Annual Baseline Parental Parental Parental
All ages  Ages 25-30 (Quadratic) (Quadratic) (Quadratic) (
Cohort Adj. 1~ Cohort Adj. 2
(©)) 2 (©)] “) ©) (6)
1950-59 0.396*** 0.325%** 0.431%** 0.431%** 0.430%** 0.429%**
(0.042) (0.046) (0.048) (0.047) (0.048) (0.047)
1960-69  0.335*** 0.304*** 0.416%** 0.418*** 0.416%** 0.420%**
(0.050) (0.046) (0.050) (0.050) (0.050) (0.050)
1970-79  0.353*** 0.283*** 0.392%** 0.386%** 0.394*** 0.393***
(0.038) (0.043) (0.044) (0.045) (0.045) (0.045)
1980-84 0.257%** 0.271%** 0.357%** 0.376*** 0.385*** 0.388***
(0.043) (0.052) (0.050) (0.050) (0.051) (0.051)
R2 0.078 0.073 0.141 0.141 0.145 0.145
N 28,241 8,149 2,238 2,238 2,238 2,238
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Correction Methods

Modelling Errors-in-Variables

Generalized Errors-in-Variables (Haider & Solon, 2006)

¢ There is an age at which the expected difference between
individuals’ log annual incomes equals the expected difference
between their log lifetime income — A\; =1

*
Ys,it = )\s,tys,i + Us ity

® Problem: age at which A, ; ~ 1 is not known and it may vary
substantially in a short window.

Our proposal: Standardized Errors-in-Variables

¢ Relates GEiV to moments that are more directly obtained.

® Ratio between variance of annual and lifetime income.
® Reliability ratio at age when incomes are observed.

® Method produces estimates within 5-10% of true IGE (still with
fairly idealized conditions).
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Table: Life-Cycle Bias and the Generalized-Errors-in-Variables Model

Correction Methods

Modelling Errors-in-Variables

Swedish data Simulated data
Son’s Age A, Bs.t Son’s Age A, Bs.t
31 0.810 0.208 41 0.896 0.461
32 0.869 0.224 42 0.958 0.470
33 0.940 0.243 43 0.997 0.506
34 1.007 0.258 44 1.036 0.518
35 1.072 0.273 45 1.047 0.525
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Correction Methods

Own Correction Method - SEiV

Rewrite annual incomes as
Ysit = 5s,t (y: + Us,t) ) (4)
where §, ; is a scaling factor that may vary with age ¢.

Under this model, the slope in a regression of (log) annual income
for sons y, ; on lifetime income of fathers y}i identifies:

Cov (ys,t,y}>
Var (y;’;)

However, individual-level data containing both annual and lifetime
incomes are rarely available.

plimf, = = Bs., 5)
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Correction Methods

Own Correction Method - SEiV

Note that the ratio between the variance of annual and lifetime
incomes can be expressed as:

Var(y)) _ Var(y:) 1 Var(ys)
Va‘r(ys,t) Var((ss,t (y;‘ + us,t)) 63,t V(J/I’(y;) + Var(us,t)

which in turn implies that

e (et

N|=

(Var(y";/)ai(‘y/:a)r(us,t)> %

We can then replace sons” annual incomes y;, ; by:

ystd =y Var(ys,t) o2 Var(y;) 2
st Var(ys) Var(y:) + Var(us.)

(6)

)
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Correction Methods

Own Correction Method - SEiV

T T

25 30 35 40 45 50
t=age of sons

T

|+ True IGE —e— SEIV (True RR) —e— SEIV (Estimated RR)‘

Figure: A standardized errors-in-variables model in Swedish Data
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