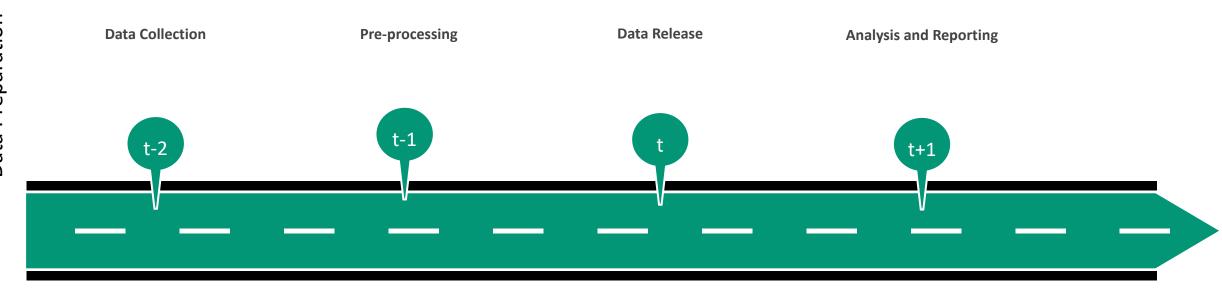
A MICROSIMULATION BASED METHOD TO NOWCAST HOUSEHOLD INCOME SURVEY DATA

WORK IN PROGRESS!

* National University of Ireland, Galway

** LUXEMBOURG INSTITUTE OF SOCIO-ECONOMIC RESEARCH

16TH JULY 2021



Expert meeting on Nowcasting and mid-term projections through microsimulation models

Funded by HRB-IRC

Need for Now casting

Survey

- Data Collection takes time
- A year or more

Pre-Processing

- Cleaning
- Coding
- Validation
- Harmonisation
- Comparative
- Anonyimity

Data Release

- Request Data
- Derived Variables
- Model Adjustment
- Further Validation

Analysis

- Simulation
- Analysis
- Write-up
- Presentation
- Publication

Nowcasting

structure.

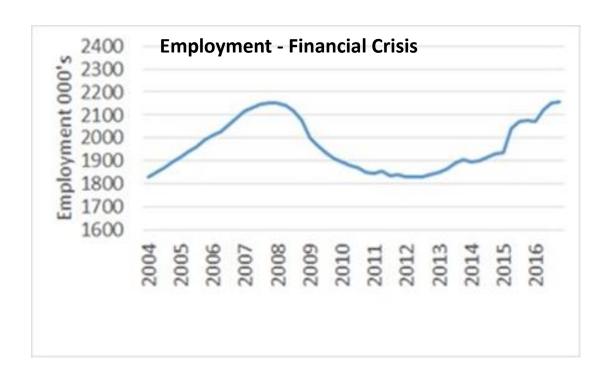
- The nowcasting process can be described in a number of ways.
 - Uprating typically refers to issues associated with indexing market income for wage growth.
 - Updating may refer to adjusting the tax-benefit rules in a microsimulation model to account for policy change.
 - Reweighting or static ageing may apply to changing weights to account for changed population structure, while dynamic ageing refers to simulating changes to the population and economic
- Is the risk in making a major change to the distribution worth it?
 - In "normal" volatility, possibly not
 - In super-normal volatility, maybe no other choice

Nowcasting

- Macro-economic literature (Giannone et al., 2008)
- Directly modelling poverty incidence (Álvarez et al., 2014)
- O'Donoghue and Loughrey (2014) survey article
- EUROMOD Leventi et a., (2014); Navicke et al, (2014) applied Nowcasting to update poverty indicators,
 calibrating to LFS using transition probabilities of employment
 - Distributional impact of COVID crisis (Figari and Fiorio, 2020; Brewer and Tasseva, 2020; Brewer & Gardiner, 2020; Bronka et al., 2020).
- Addabbo et al., (2016) extend the parametric perspective of EUROMOD by modelling employment transitions
 using estimated logit equations.
- Carta (2019) Instead of taking labour force status from household surveys, imputes labour incomes into LFS.
- Li et al (2020) used semi-parametric perspective, a la DiNardo, Fortin and Lemieux (1996)

Nowcasting - Choice of Method

- Use of Monte-Carlo simulations based upon cell-specific probabilities may ignore some of the important heterogeneity exhibited in a crisis. For example, family status may be an important driver.
- Partners within a family may be correlated as identified in Carta (2019).
 - Carta (2019) avoids issues associated with intra-household variation or sectoral biases by using recent labour force survey data.
 - Ignoring the impact of other non-labour force characteristics and the impact of public policy as a insulating mechanism is an issue.
 - Question → is it harder to simulate labour market changes in a model that contains the full range of incomes and policies or vice versa.


Nowcasting - Choice of Method

- Reweighting or semi-parametric approaches are strong in the sense that they avoid distributional assumptions.
 - However like other static-reweighting procedures they rely on sufficient sample sizes and face the risk with very many dimensions of relying for cell weights on small numbers. (Klevmarken 1997).
- In the case where reweighting or semi-parametric approaches prove unfeasible, a parametric approach may be a more pragmatic approach.
- In this paper we consider in more detail a parametric approach akin to the Addabbo et al., (2016) methodology, but in addition drawing upon the alignment aspects of the dynamic microsimulation literature.

THE FINANCIAL CRISIS

- Financial Crisis 2008-2012
- One of the deepest and longest lasting Financial Crises (FC)
 - Worst year 2009. Lowest point 2012
 - Young and Male
 - Big tax loss

THEORETICAL FRAMEWORK — INCOME GENERATING PROCESS

- Estimate system of equations representing
 - Z Demographic and Data Sampling Error
 - Ii() Presence of Income Source I
 - Yi() Level of Income Source I

$$Y_{it}^{H} = \sum_{F} \sum_{I} \sum_{S} \frac{Y(a + B_{st}X_{it} + v_{si} + u_{ist})}{I(c + G_{st}Z_{it} + w_{si} + e_{sit})}.$$

Correlation between income sources

$$Corr(u_{is_1t,}u_{is_2t,}) = \rho_{s_1s_2}$$

Correlation over time

$$Corr(u_{its_2}, u_{ist_2}) = \rho_{t_1t_2}$$

Correlation between people in household

$$Corr(u_{i_1st,}u_{ist,}) = \rho_{i_1i_2}$$

We assume they remain the same – in reality they change

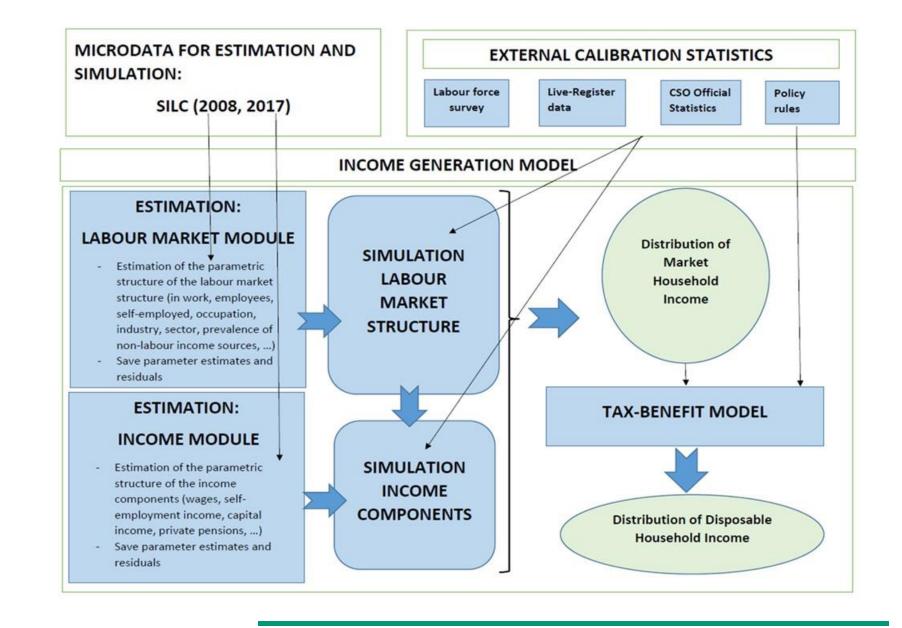
THEORETICAL FRAMEWORK — ASSUMPTIONS ABOUT PROCESS

$$Y_{it}^{H} = \sum_{F} \sum_{I} \sum_{S} Y(a + B_{st}X_{it} + v_{si} + u_{ist}).$$

$$I(c + G_{st}Z_{it} + w_{si} + e_{sit})$$

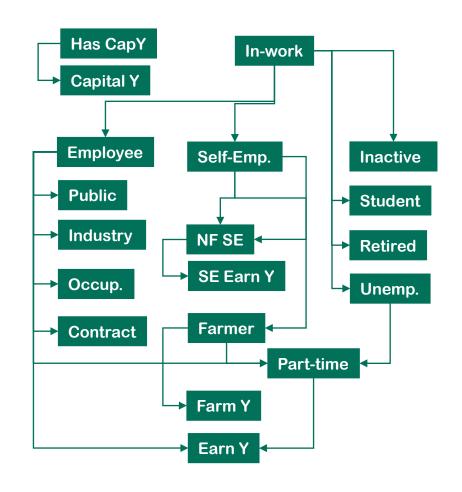
- Calibration means adjusting the constant or at most adjusting the constant for separate population groups for which we have control total
- In addition to the assumptions about the data generating process that are made
- There is sampling variation → so other variation

Assume


$$Var(u_{ist,}) = constant$$
 $Var(e_{ist,}) = constant$

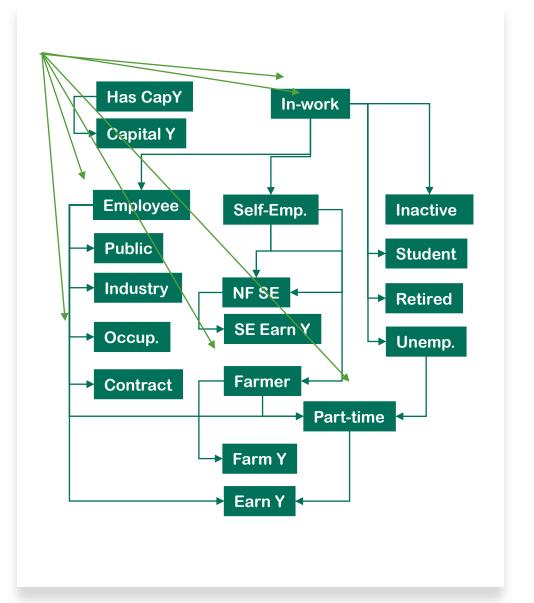
$$B_{st} = B_{st+1} \qquad G_{st} = G_{st+1}$$

$$X_{st} = X_{st+1} \qquad Z_{st} = Z_{st+1}$$


We assume they remain the same – in reality they change

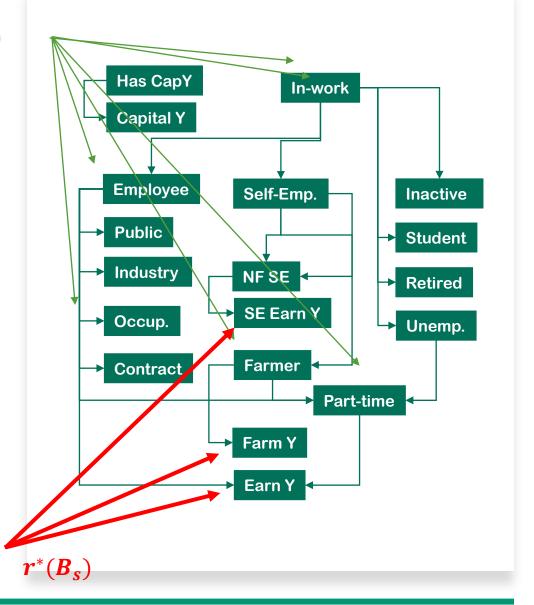
METHODOLOGY

METHODOLOGY — SYSTEM OF EQUATIONS


- relies on a system of hierarchically structured, multiple equation models for detailed income sources, combining:
 - a set of personal (individual and household) characteristics,
 X,
 - parameters describing how employment, the receipt and level of income sources vary with personal characteristics, B
 - residuals linking model predictions to observed income sources, e;
 - a tax-benefit simulator for converting market incomes into disposable incomes
 - parametric structure of the IGM
- Y=m(X, e, l(B), r(B), tb)
- l=labour market models, r=returns models, tb=tax-benefit system

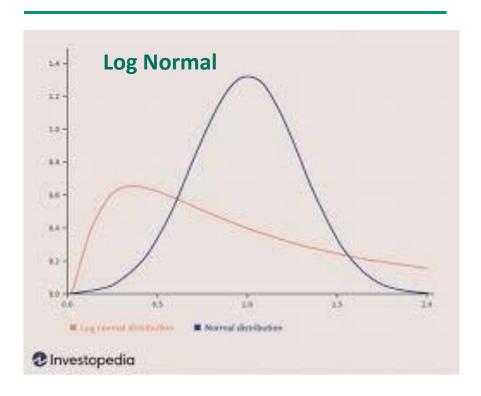
METHODOLOGY — STEPS

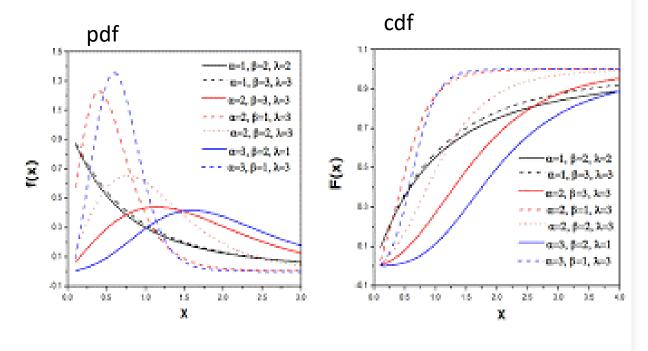
- Step 1: Estimation
 - we use the latest available survey year (s) to estimate the parameters of the IGM
- $Y_s = m(X_s, e_s, l(B_s), r(B_s), tb_s)$
- Step 2: Nowcasting to period t
 - X_s (exogenous characteristic), e_s (error structure),
 B s(IGM parameters) are kept the same
 - $l^*(B_s)$ labour market simulations are calibrated to external controls (go to picture)
 - $r^*(B_s)$
 - simulate all income sources based on the new labour market structure l^* (B_s) (new inwork, new occupation, new industry structure → wage structure)
 - uprate pre-fiscal monetary variables to align them with the policy parameters



tb_t policy parameters of period t

METHODOLOGY — STEPS


- Step 1: Estimation
 - we use the latest available survey year (s) to estimate the parameters of the IGM
- $Y_s = m(X_s, e_s, l(B_s), r(B_s), tb_s)$
- Step 2: Nowcasting to period t
 - X_s (exogenous characteristic), e_s (error structure),
 B s(IGM parameters) are kept the same
 - $l^*(B_s)$ labour market simulations are calibrated to external controls (go to picture)
 - $r^*(B_s)$
 - simulate all income sources based on the new labour market structure l^* (B_s) (new inwork, new occupation, new industry structure → wage structure)
 - uprate pre-fiscal monetary variables to align them with the policy parameters


MAIN DIFFERENCES BETWEEN THE TWO NOWCASTING APPROACHES

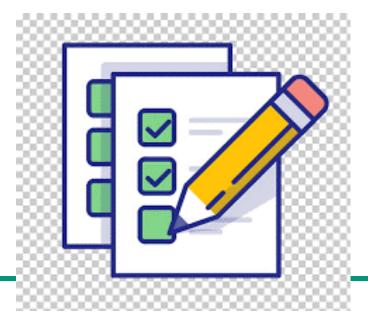
10	GM	Transition Matrix/Monte Carlo
-	abour market component Hierarchical system assures the sequential calibration of in-work, employment, occupational, industrial structure) We allow transitions in-work and out-of-work	Labour market component - Applies employment probabilities to transition people out-of-work
li -	Simulate all income components, taking into account the changes in the labour market structure (e.g. those that are classified in a different occupation in the calibration, have their wage updated)	Income componentSimulate incomes of those out of work

MODELLING ISSUE — EARNINGS DISTRIBUTIONAL ASSUMPTIONS

Singh Maddala Distribution – more control in parameterisation of curve

DATA ISSUES

- Time lag between collection and release for research and analysis.
 - The most recent analysis of SILC undertaken is for 2007 compared with 2008 and 2009.
 - In normal times a lot happens in a two year period,
 - In a crisis the changes are so significant that such a lag can mean the data is relatively meaningless.
 - There are more recent datasets available
 - LFS → available on a quarterly basis at a six week lag
 - the Live Register data and Price data → monthly basis on a short lag.
 - Pandemic Benefit Impact → weekly
- However these datasets do not contain income information.


ALIGNMENT IN IGM

- Simulate GZ + v → Logit Model
- Calibration Total by Sex and Gender
- Rank within Group
 - Select the highest GZ + v according to the external calibration totals

Modelling Choices to be tested

- Do Models change over time?
- Is it important to model in more specific detail than in-work (ie structural changes)?
- How should we model income equations (Log-norm vs Singh Maddala Distributional Regression)?
 - Comparing IGM with transition matrix/Monte Carlo
 - Looking at historical crisis 2007-2009
- Use Simple Model then Full Model

Do Models Change over Time – CHOW Test

	Sex	Male		Male		
		Beta	S.E.	Beta	S.E.	
	University	1.2856***	0.1051	1.2856***		0.1051
	Upper Secondary Education	1.1107***	0.0878	31.1107***		0.0878
	Numer of Children Aged 0-3	0.1086	0.1235	0.1086		0.1235
	Number of Children aged 4-					
	11	-0.1594**	0.0626	5-0.1594**		0.0626
	Number of Children aged 12-					
	15	-0.2285***	0.0779	9-0.2285***		0.0779
	Married	0.653***	0.0959	0.653***		0.0959
	Age	0.3168***	0.0103	80.3168***		0.0103
	Age Squared	-0.0038***	0.0001	L-0.0038***		0.0001
Oh . Tari Bardala	D II de	-0.0884	0.0918	3-0.0884		0.0918
Chow Test – Models	Rural	0.4898***	0.0890	0.4898***		0.0890
Different over time	Year == 2009			-0.5203		0.3162
	Year == 2009 x University			0.0949		0.1430
	Year == 2009 x Upper Second	lary Education		-0.2146*		0.1241
	Year == 2009 x Numer of Chil	dren Aged 0-3		0.1195		0.1728
	Year == 2009 x Number of Ch	ildren aged 4-11		0.0092		0.0859
	Year == 2009 x Number of Ch	ildren aged 12-15		0.0013		0.1127
	Year == 2009 x Married			-0.052		0.1342
	Year == 2009 x Age			0.0107		0.0150
	Year == 2009 x Age Squared			-0.0001		0.0002
	Year == 2009 x Per-Urban			-0.1125		0.1292
	Year == 2009 x Rural			-0.1392		0.1247
	Constant	-5.7354***	0.2159	9-5.7354***		0.2159

IS THE INDUSTRY DISTRIBUTION DIFFERENT?

- No difference in industry distribution when not simulated for Males, but difference for females
- IGM captures changes

	Chi Square Test	of Industry Distribution			
		Monte Carlo		IGM	
d	Male		0.014		0.000
	Female		0.116		0.000

ARE SIMULATED MEAN EARNINGS DIFFERENT? RATIOS

- Log Normal creates means that are different for both Transition Matrix/Monte Carlo and IGM
- Singh Maddalla very close

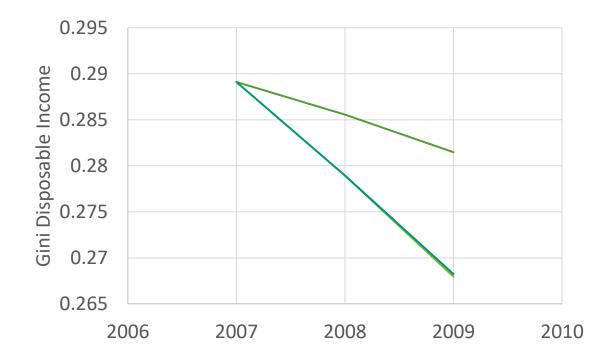
Ratio of Means			
	Male		Female
Monte Carlo		1.06	1.19
IGM (OLS)		1.07	1.19
IGM (SMD)		1.02	1.02

ARE SIMULATED MEAN EARNINGS DIFFERENT? STATISTICAL DIFFERENCE

- Means different for both Transition Matrix/Monte Carlo
- No difference for SMD

Statistically Significant Difference in Means					
	Male		Female		
Monte Carlo		1	1		
IGM (OLS)		1	1		
IGM (SMD)		0	0		

ARE SIMULATED MEAN EARNINGS DIFFERENT? KOLGOMOROV-SMIRNOV TEST OF DISTRIBUTIONS (P. VALUE OF DIFFERENCE)


- Transition probability/Monte Carol Different for all
- Distributional Issues using log-normal
- No difference with actual for SMD for Males
- Difference of females due to changes in residuals not

Kolgomorov-Smirnov Test of Distributions (p. value of difference)				
	Male		Female	
Relative to Actual	2009			
Monte Carlo		0.006	0.000	
IGM (OLS)		0.006	0.000	
IGM (SMD)		0.133	0.001	
IGM (SMD - No				
Industry)		0.185	0.001	

Nowcasting — Evaluation

Evaluation

- Looking back at simulation properties of a now cast during the financial crisis
- Comparing simulated with actual, we find a good fit.
- However performance weakens the further the now cast
- Over longer term, method picks up on turning points and trend, but weaker on level

SUMMARY

- Nowcasting a useful methodology
- Not much difference between Transition Matrix and IGM for In-work
- Significant difference if other structural changes
- Problems in using Log-Normal distribution
- Model replicates changes in Income Distribution over 1 year
- Over longer term captures the trend, but weakens the further we get from estimation year
- What is the success bar?
- Future work trends in B and Sigma's

Thank you

Cathal.odonoghue@nuigalway.ie